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Coulombic Noubonded Interatomic Potential Functions Derived from Crystal-Lattice 
Vibrational Frequencies in Hydrocarbons 

BY THOMAS L. STARR AND DONALD E. WILLIAMS 
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The method of calculation of crystal-lattice normal-mode frequencies of hydrocarbons was sharpened 
to include bond foreshortening of C-H bonds, dynamic derivatives, and atomic point charges. A test of 
the method was made with 118 observed structural parameters from 18 aromatic and saturated hydro- 
carbon crystal structures, and 58 observed crystal frequencies from five aromatic hydrocarbon crystal 
structures. The use of dynamic derivatives significantly improved the fit to the observed frequencies. The 
use of atomic point charges also significantly improved the fit to the observed frequencies; the optimum 
values found for the point charges were essentially identical to the optimum values obtained from struc- 
tural data alone. The direct parameter-fit method, although giving reasonable results for the structural 
parameters, was found not to transfer well to the calculation of lattice frequencies. The force-fit method 
gave significantly better results for the lattice frequencies. The final optimum (exp-6-1)  nonbonded 
interatomic potential functions derived from the combined structural and vibrational data were very 
similar to the functions derived from the structural data alone. 
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Introduction 

The calculation of crystal lattice vibration frequencies 
has been the subject of much study since the initial 
formulation by Born & Huang (1954). Extension to 
molecular crystals was performed by Pawley (1967, 
1972) using the rigid-molecule and atom-atom poten- 
tial approximations. With this method the complete 
phonon dispersion curves can be calculated with re- 
latively few adjustable parameters. These results can 
then be compared directly with experimental results 
from neutron inelastic scattering or Raman and IR 
spectroscopy. Other properties such as elastic con- 
stants, thermal diffuse scattering of X-rays, Debye- 
Waller factors and the Debye temperature can be cal- 
culated from the dispersion curves and compared with 
experiment. The use of such calculations to predict 
solid-state properties is the general aim of such in- 
vestigations. 

The error in the calculated frequencies introduced 
because of the rigid-molecule assumption has been in- 
vestigated by several authors. For benzene, the errors 
are quite small (Taddei, Bonadeo, Marzocchi & 
Califano, 1973) and for a more flexible molecule such 
as naphthalene, the shifts are only about 10% (Pawley 
& Cyvin, 1970). Even for durene which includes the 
relatively low-frequency oscillations of methyl groups, 
the rigid-molecule approximation gives results within 
10% of an extended treatment (Sanquer & Messager, 
1975). Thus, the rigid-molecule approximation seems 
to be quite satisfactory, at least for fused-ring systems. 
Since the internal degrees of freedom systematically 
lower the lattice frequencies, this knowledge can be 
used implicitly when comparing calculated frequencies 
with experiment. 

The critical problem in these calculations is an ac- 

curate description of the intermolecular potential. The 
a tom-atom method has already proven quite success- 
ful for the calculation of heats of sublimation and crys- 
tal structures (Williams & Starr, 1977). A physically 
meaningful potential that gives good values for these 
static crystal properties should also give good results 
for the lattice dynamics. This is a fairly stringent test 
for a set of potential parameters but is critical to 
further applications of the potential. It is important 
that the potential be used consistently in both the 
static and dynamic calculations. Some authors have 
made small modifications in the structure-derived 
potentials for calculating the lattice frequencies. It 
should be noted that such modifications will, in gene- 
ral, worsen the fit to the heats of sublimation and crys- 
tal structure. 

In the a tom-atom method the intermolecular poten- 
tial is given as the sum of a tom-atom potentials. In 
principle, a whole class of molecules can be treated 
using only a few interactions. Rather than obtain 
potential parameters to give the best results for one 
particular molecule, we desire potential parameters 
that give reasonably good results for a wide range of 
systems. This will ensure the usefulness of the poten- 
tials for future applications. 

Lattice dynamics 

In the harmonic approximation to crystal-lattice 
dynamics, the crystal energy is expanded in a Taylor 
series in small displacements from the equilibrium 
position, neglecting terms to third order and higher. 
The first-order terms drop out since they correspond 
to the forces and torques on the molecule, which at 
equilibrium are zero. The solution to the equations 
of motion of the molecule in the crystal reduces to an 
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eigenvalue problem. The eigenvalues of the dynamical 
matrix give the vibration frequencies while the eigen- 
vectors give the normal modes. The dynamical matrix 
can be obtained from the atom-atom intermolecular 
potentials as shown by Pawley (1972). 

On physical grounds, the dynamical matrix is re- 
quired to be Hermitian. As noted by Scheringer (1974) 
and by actual calculations in this laboratory, Pawley's 
method does not strictly obey this constraint. Since 
the difference is small, the dynamical matrix is sym- 
metrized by simply averaging the cross-diagonal 
terms. This has only a slight effect on the calculated 
frequencies. 

For any particular set of potential parameters, the 
observed crystal structure will not exactly obey the 
equilibrium conditions of zero force and torque. Thus, 
small displacements from the observed structure must 
be made to reach the energy minimum required for 
the lattice dynamics calculation. Although the shifts 
in position may be quite small, this can have a re- 
latively large effect on the frequencies. 

The harmonic approximation for lattice dynamics 
and the atom-atom model contain no information 
about temperature. For crystal structures, this is not 
serious since thermal effects are rather small. For 
lattice frequencies this is not the case and the tempera- 
ture variation is considerably larger. Some method of 
fixing the calculated frequencies to a particular tem- 
perature is desired. In the quasi-harmonic approxima- 
tion the frequencies depend only on the volume (Leib- 
fried & Ludwig, 1961) and the temperature variation 
is the indirect result of thermal expansion. Using this 
we set the lattice constants for a particular tempera- 
ture from experiment. The calculated frequencies are 
then compared with experimental frequencies at the 
same temperature. 

Previous work on hydrocarbons 

The intermolecular potential for hydrocarbons can be 
obtained in the atom-atom model from interatomic 
potentials for C-C, H-H, and C-H. The interatomic 
potential can be written as a Buckingham potential 
(exp-6) 

V(r) = - A r -  6 _31_ B exp ( - Cr) 

or including Coulombic interactions ( e x p - 6 - 1 )  

V(r)= - A r  -6  + B exp ( -  C r ) + q l q 2 r -  1 . 

A, B and C are adjustable parameters and ql and qz 
are the point charges on atoms 1 and 2. Certain as- 
sumptions are usually made about the distribution of 
charges to reduce the number of independent param- 
eters (Williams, 1974). 

Using non-Coulombic potential parameters from 
Kitaigorodsky, Pawley (1967) calculated the lattice 
frequencies for naphthalene and anthracene. His re- 
suits are consistently high compared with the Raman 
results (Suzuki, Yokayama & Ito, 1968) with an r.m.s. 

error of about 17 cm -1. More recently, Filippini, 
Gramaccioli, Simonetta & Suffritti (1973) have cal- 
culated frequencies for nine hydrocarbons using a non- 
Coulombic potential from this laboratory. Their re- 
suits are generally low with an r.m.s, error of about 
11 cm-1. Although this could be considered good 
agreement there are two problems. First, the inclusion 
of non-rigid motion in the calculation is expected to 
lower the frequencies somewhat. Since the calculated 
frequencies are already generally too low, the agree- 
ment will become worse. The second problem is with 
the use of Williams's potential parameters. In deriving 
the parameters from crystal data, Williams has as- 
sumed a foreshortened C-H bond distance of 1-027 
A for aromatics (Williams, 1965). Consistent applica- 
tion of these potentials requires the use of this fore- 
shortened bond length in the lattice-dynamics cal- 
culation. 

Table 1 shows the effect of foreshortening on the 
lattice frequencies of naphthalene with the same poten- 
tials used by Filippinni et al. (1973). All the frequencies 
decrease significantly when foreshortening is used, re- 
suiting in a poorer fit to experiment. Thus, this poten- 
tial is not as good for the calculation of lattice dynamics 
as it first appears. 

Table 1. Naphthalene  lattice frequencies (cm-1) 

Mode Experimental value" C-H = 1.09 A 1.027 A 
Ag 109 114.3 104.1 
Bg 125 114.2 105.8 
A, 98 89"2 85"0 
Ag 74 81"0 73"8 
Bg 71 68"5 60"0 
B, 73 53"4 50"3 
A~ 51 51"7 46"6 
Bg 46 43"6 41 "4 
A, 39 42"3 39"3 

R.m.s. error 9 12 

References: (a) Suzuki, Yokayama & Ito (1968); Bazhulin & 
Rakhinov (1967). 

Taddei, Bonadeo, Marzocchi & Califano (1973) have 
also used this potential in calculating the lattice 
dynamics of benzene. In addition to the neglect of 
foreshortening, these workers did not shift the mol- 
ecule to the energy minimum prior to the lattice- 
dynamics calculation. The effect of this is shown in 
Table 2. Both foreshortening the C-H bonds and re- 
laxing the forces have a great effect on the frequencies 
and, in general, result in a worsening of the fit to ex- 
perimental values. Thus, this hydrocarbon potential 
does not give good results for the lattice dynamics 
when consistently applied. 

More recent parameter sets 

More recent potential parameter sets have been de- 
rived from crystal structure data with two different 
methods. The force method has been used previously 
by Williams (1970) and is based on minimizing the 
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Table 2. Comparison of lattice-dynamics models 
Lattice frequencies (cm)-1 of benzene at 138 K 

Minimized 
structure Experimental Observed structure 

Mode value a CH = 1.090 A 1.027 A 1.090 A 1.027 A 

Ag 93 91-9 83-9 92.6 80.0 
78 69"6 65"8 75"6 66"9 
57 46.3 42.9 36.7 27.2 

Big 128 125"9 116"0 137"3 118"8 
84 84.3 74"9 87"0 73"0 
61 60"3 51-4 69"6 57"9 

B2g 90 98"1 89.2 103"0 85"9 
- 88"9 78-0 91 "3 76"9 
79 78"9 73.1 80"2 69"3 

Ba~ 128 128"0 117"3 139"0 119"1 
100 91"7 82"8 97"7 82"9 
57 52"8 48"6 47"5 40"5 

A. - 97"8 90"8 103"2 88"8 
- 66"0 59"5 71"6 62"3 
- 56"5 53"0 59"1 52"1 

BI. 98 98"5 92"0 97"4 83"7 
65"5 53"1 50"5 57"1 49"7 

B2u 100 101"4 94"8 108"9 95"1 
56 58"6 54"8 56"6 49"3 

Ba~ 88"5 86"7 80"5 90"5 78"6 
73 72"4 66-7 74"3 65"5 

R.m.s. error 6 10 8 13 

Reference: (a) Taddei, Bonadeo, Marzocchi & Califano (1973). 

forces at the observed crystal structures. The direct 
parameter-fit method was proposed by Hagler & 
Lifson (1974), and minimizes the estimated shifts from 
the observed structure with a Taylor series expansion. 
The details of these schemes and the derived potentials 
are given in another paper (Williams & Starr, 1977). 
Potential I uses the force method and has no point 
charges. Potential II also uses the force method but 
includes Coulombic effects. Potential III is a Coulom- 
bic potential derived with the direct parameter-fit 
method. A comparison of these potentials for the cal- 
culation of crystal structure shows the two Coulombic 
potentials to be about equally good and much better 
than the non-Coulombic. The values for the potential 
parameters are given in Table 3. 

Table 3. Hydrocarbon potential parameters derived 
from crystal data (kJ mol- x, A, electrons) 

Force method Direct parameter fit 
Set I Set II Set III 

Parameter non-Coulombic Coulombic Coulombic 

AHn 102 136 153 
BHH 9080 11677 14662 
CHH 3"74 3"74 3"74 
AHC 467 574 642 
BHc 35600 65485 84788 
CHc 3-67 3-67 3-67 
Acc 2140 2414 2695 
Bcc 300000 367250 490290 
Ccc 3"60 3-60 3"60 
qH(CH) 0"000 0"153 0"167 

These potentials are used to calculate the Raman 
and IR frequencies for five aromatic hydrocarbons for 
which experimental values are available. Convergence 

acceleration is used for the Coulombic potentials 
(Williams & Starr, 1977). Fixing the lattice constants 
at the experimental values, the molecules are shifted 
slightly to the energy minimum with the computer 
program PCK6 (Williams, 1972), before calculating 
the frequencies. For benzene, the low-temperature ex- 
trapolated lattice constants are used. The calculated 
frequencies are compared with experiment in Table 4. 
Potential II gives the best fit to experiment with an 
r.m.s, error of 14 cm-1. Potential I gives an r.m.s. 
error of 20 cm-1 and potential III gives 27 cm-1 
Although potentials II and III give similar results for 
the crystal structure, potential II is clearly superior 
for the crystal dynamics. The Coulombic potential 
II is again shown superior to the non-Coulombic 
potential I. Inclusion of internal degrees of freedom 
should result in a general improvement in the results 
for potentials II and III and a worsening for potential 
I. Overall, the best fit to both structure and dynamics 
is obtained with the Coulombic potential derived 
using the force method. 

Crystal Mode 

Benzene a Ag 
77 K 

Table 4. Observed and calculated frequencies (cm-1) 

The potential sets are given in Table 3. 
Direct 

Experi- parameter 
mental Force non- Force fit 
value Coulombic Coulombic Coulombic 

97.5 79.2 105"0 121.3 
83.0 65.7 92.3 104.8 
61.0 27.3 47-0 48"0 

Big 132.0 118.4 163.7 189.9 
87.0 72.9 98-2 112.7 
67-0 56.4 67.4 79.4 

B2g - 85"5 129.7 148-4 
94.0 77.4 106.5 121.8 
83"0 69-4 95.2 111.0 

B3g 132.0 118.3 163.7 188-7 
105.0 82.8 123.5 143-3 
65.0 42.5 60.3 68.0 

Au - 89-6 124.2 144.4 
- 62.5 77.7 92.5 
- 52.9 70"0 82.5 

Bxu 102.0 85.0 122-3 142.5 
71-0 50.4 67.6 78.7 

B2u 105-0 96-6 131-2 155.1 
59.0 49"9 69.6 80.7 

B3~ 91.5 79"5 105-2 123.9 
76.0 66"1 89.0 106-3 

Ag 109 99-8 135.7 158-9 
74 67.5 91 "8 108.3 
51 41.6 53"8 62-4 

Bg 125 100"7 140.2 164.9 
71 54.2 77-6 91.7 
46 37.7 53-8 55.8 

A~ 98 79.7 110.8 133"2 
39 34.2 46.8 55"6 

B,, 73 45.4 69.1 80"3 
Ag 121 113.2 149.7 180.5 

70 61.7 90.0 114.9 
39 29-4 39.4 45-8 

Bg 125 108-7 148"9 184.4 
65 49-6 71"2 89.1 
45 37.3 47.5 59"1 

A~ - 83"8 115"9 146"9 
- 28.2 40-8 50.6 

Bu - 45.2 70.0 83.4 

Naphthalene b 
298 K 

Anthracene c 
293 K 
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Table 4 (cont.) 
Direct 

Experi- parameter 
mental Force non- Force fit 

Crystal Mode value Coulombic Coulombic Coulombic 

Phenanthrene n A 127 97.9 133.3 158.0 
298 K 108 71.0 97.7 116.5 

89 48-1 69.6 82.0 
62 42.8 54.8 64.2 
33 28.2 40.7 47.7 

B 109 87.0 121-7 145.9 
99 65-2 94.6 112.4 
60 43-5 63-9 74.8 
31 21.7 30"0 36.2 

P y r e n e  e Ag 127 86"0 108-9 127"4 
298 K 92 75"6 98"3 116"3 

76 51.6 72-7 87"1 
56 38"4 45"7 57"7 
46 31.2 41.8 49.8 
17" 16-0 20-7 24-1 

Bg 126 87.7 112.8 132.5 
93 76-4 100"8 120-3 
67 56"5 78"7 95"4 
56 35-4 46.7 55.7 
41 30-5 45-4 53"3 
30 22-0 30"5 36-8 

Au 102 91"4 119"4 139"9 
71 69"8 87"9 101"6 
- 41-2 61-8 75"8 
- 36"6 52"1 61"0 
- 19-1 28"6 34"4 

B, 105 91"5 120"5 141"0 
89 72"4 94"5 112"9 
70 43"0 62"7 74"2 
- 25.1 35"0 40"7 

R.m.s. error 19.6 13.6 26.8 

References: (a) Structure: Bacon, Curry & Wilson (1964). Frequen- 
cies: Sataty & Ron (1976), Sataty, Ron & Brith (1973). (b) Structure: 
Cruickshank (1957). Frequencies: Suzuki, Yokayama & Ito (1968), 
Bazhulin & Rakhinov (1967). (c) Structure: Mason (1964). Frequen- 
cies: Suzuki, Yokayama & Ito (1968). (d) Structure: Trotter (1963). 
Frequencies: Bree, Solven & Vilkos (1972). (e) Structure: Camerman 
& Trotter (1965). Frequencies: Bree, Kydd, Misra & Vilkos (1971). 
* Zallen, Griffiths, Slade, Hayek & Brafman (1976). 

Derivation of parameters using lattice frequencies 

Since the direct parameter-fit method more directly 
fits the crystal parameters, a modification of this meth- 
od was made to include the fit to lattice vibrations. 
This was done by including the frequencies directly 
in the least-squares fitting scheme to obtain potential 
parameters. 

Examples of the derivation of potential parameters 
using lattice frequencies are quite limited. Taddei, 
Bonadeo, Marzocchi & Califano (1973) used a least- 
squares procedure to improve the fit to the frequencies 
of benzene. This work is subject to the problems dis- 
cussed earlier: they do not relax the forces before cal- 
culating the frequencies and they do not use the proper 
foreshortened bond lengths. Bonadeo & D'Alessio 
(1975) refined the potential parameters for a series of 
chlorobenzenes and their work has the same problems 
as the benzene study. 

The only completely satisfactory studies of molec- 
ular crystals are Rinaldi & Pawley (1975) for ortho- 

rhombic sulfur and Huler & Zunger (1975) for solid 
nitrogen. The latter work goes beyond a simple inter- 
molecular potential model to include entropy effects. 
The method of Rinaldi & Pawley is equivalent to that 
described in this paper. Orthorhombic sulfur is a 
particularly simple case since it contains only one type 
of atom and one crystal structure. A unified refine- 
ment involving a broad range of hydrocarbons and 
using heats of sublimation, crystal structure param- 
eters, and lattice frequencies has not been performed 
previously. 

In general, a particular crystal lattice frequency is 
a function of the potential parameters (q) and the 
structural parameters (p) at the equilibrium position. 
The position of equilibrium is also a function of the 
potential parameters so that the frequency is affected 
both directly and indirectly by the potential param- 
eters. 

m=oo[q,p(q)] . 

For a least-squares fitting, the derivative of the fre- 
quency with respect to each potential parameter is 
needed. This is given by 

do~/dqi=&o/aqi+ ~_, c3~/c~p i api/c3qi. (1) 
J 

The first term corresponds to holding the structure 
constant while varying the potential parameters. This 
derivative, which we will call the static derivative, can 
be obtained analytically as outlined by Pawley (1972). 
The squared frequencies in the lattice-dynamics cal- 
culations are obtained as eigenvalues of the dynamical 
matrix, M. That is, the matrix E, of eigenvectors, 
diagonalizes the dynamical matrix giving the squared 
frequencies, O = o~ 2 as the diagonal elements: 

RMR- 1 = RMR r = (2 since R is orthogonal. 

For a small change Aq in a potential parameter 

A Q = R'(aM/c3qiA qi )R 'T.  

Dividing by Aq and taking the limit, we obtain 

aog/~qi = RaM/c3qi R T . 

The diagonal elements of this matrix will give the 
necessary derivatives: 

&o/~3qi = ( af2/aqi)/2co . 

The dynamical matrix can be written as a sum of 
terms, each involving only one potential type, with 
the potential parameters A, B, and q factored out of 
the lattice sums 

M = AHHM6(HH ) + A r t c M 6 ( H C ) . . .  

+ BccMR(CC) .  • • + q 2M 1 

where M6(HH) is a summation over the crystal in- 
volving only r -6 terms between two hydrogens. MR 
and M 1 have similar meanings for the repulsive and 
Coulombic terms. The exponents CHH, CHc and Ccc 
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cannot be factored out of the expression. The deriva- 
tives are then taken directly. 

O(2/OAHH = FIM6(HH)FI T, etc. 

Obtaining these derivatives takes only slightly longer 
than obtaining the frequencies alone. 

As a first approximation, the other terms in (1) are 
neglected and the derivatives obtained are used in a 
least-squares fitting scheme. It is convenient to refine 
the parameters all, bn, ao bc and q where a2=AHH, 
a 2 = Aco b E= Bcc and the parameter q is the partial 
charge in electrons on an aromatic hydrogen. Assum- 
ing the geometric-mean combining law, 

and 

a n a c = A n o  bHbc=BHc 

O0)/OaH = 2aHOCO/OA HH + ac&O/C~AHc 

630)/C3bH = 2bHOCO/OBHH -t- bcc?o~/t?Acc 

t?o~/c3ac = 2acOo~/t? Acc + aHOC.o/a A Hc 

&o/Obc = 2bc&o/OBcc + bHOO)/aAHc . 

The structural data for 18 aromatic and saturated 
hydrocarbons yield 118 observational equations. The 
five aromatic hydrocarbons yield 58 observed crystal 
frequencies. Heats of sublimation for benzene and n- 
hexane are included to scale the potential. These com- 
pounds were selected as representative aromatic and 
saturated hydrocarbons. Their heats of sublimation 
have been determined calorimetrically to good ac- 
curacy. 

Weighting scheme 

In any non-linear least-squares procedure the choice 
of weights is important, particularly when fitting such 
a wide variety of data. Ideally the weight is the re- 
ciprocal of the square of the standard deviation of the 
observation. Using this relation we obtain weights 
from estimates of error for each type of data. These 
estimates are: unit-cell edge 1%, cell angles and mo- 
lecular rotations 0.02 rad, molecular translations 
0:05 ,~, lattice frequencies 4.5 cm-1, heats of sublima- 
tion 0.2 kJ mol-1 

Results - static derivatives 

After an initial improvement of the frequency fit at 
the expense of the structure fit, subsequent cycles 
showed no improvement. Indeed, the overall fit 
worsened in some cycles, indicating that the shifts 
chosen were not correct. This suggests that the deriva- 
tives for the crystal frequencies are not correct and that 
the last terms in (1) cannot be neglected. 

Comparison of static and dynamic derivatives 

Calculation of the additional terms in (1) cannot be 
done analytically. The correct derivatives, which we 

will call dynamic derivatives, can be calculated nu- 
merically by making a small change in a potential 
parameter, minimizing the energy and recalculating 
the frequencies. The derivative is evaluated from" 

&o/c3qi = [o~(q~ + Aq, ) -  co(qi)]/Aqi 

where q~ is a particular parameter. This procedure re- 
quires considerable computer time but is possible with 
the available facilities. A comparison of static and 
dynamic derivatives for benzene illustrates the failure 
of the static-derivative approximation. The difference 
between the derivatives is largest for bc and q with 
several derivatives that change sign. The lowest Ag 
mode, which caused a great deal of difficulty in the 
first fitting attempt, shows particularly large changes 
in the derivatives. 

Results - dynamic derivatives 

Using dynamic derivatives the least-squares fit pro- 
ceeded smoothly with each cycle resulting in a better 
fit than the previous. Convergence was obtained after 
five cycles resulting in the parameter set given in 
Table 5. Comparison with Table 3 indicates a striking 
similarity between this parameter set and that derived 
with the force method and structure data only. The 
frequencies calculated from the two sets are practically 
identical. This result strongly supports the force meth- 
od as yielding the 'best' set of parameters consistent 
with both structure and dynamics. 

Table 5. Potential parameters from unified refinement 
(kJ mol-  1 and A) 

Ann 126 Cnc 3"67 
BHH 9816 Acc 2420 
CHH 3"74 Bcc 409600 
AHc 552 Ccc 3"60 
Bnc 63410 q 0" 159 

Conclusion 

The Coulombic potential II which is derived from 
structural data with the force method is successful in 
the calculation of both crystal structure and crystal- 
lattice dynamics. The non-Coulombic potential does 
not compare well in either calculation. The potential 
derived using the direct parameter-fit method fails for 
the lattice-frequency calculation. These results sup- 
port the Coulombic model for hydrocarbons and the 
force method for the derivation of the potential par- 
ameters. Inclusion of internal vibrations in the cal- 
culation will generally give an improvement in the 
fit to experiment. Further work toward improving the 
potential model will be needed to include the tem- 
perature variations of the frequencies and cell con- 
stants. 

This investigation was supported by research grant 
number GM16260 from the National Institutes of 
Health. 
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NaF gives rise to very weak odd-index reflexions in X-ray diffraction. These reflexions have been studied 
to determine the best models for electron distribution in the NaF crystal. Data were obtained from a single 
crystal at room temperature for Ag K~, Mo K~, Cu Kct and Co K~ radiations. Least-squares analyses were 
made on the Ag K0c and Mo K~ data. Scattering factors for Hartree-Fock singly charged free ions allowed 
a good fit to the data, and there was a marginal improvement of the fit with similar scattering factors 
modified for effects of crystalline environment. The mean thermal parameter for the ions was B= 
0-905+0-025 A 2. An attempt to account for the wavelength dependence of intensities of the strong 
reflexions, with current theories of extinction, was unsuccessful. 

1. Introduction 

The structure of N a F  was established early in the 
history of X-ray crystallography. There are neverthe- 
less a number of pertinent questions which might be 
answered from a careful study of the intensities of the 
various reflexions. These questions include: 

* Present address: Research School of Chemistry, Australian 
National University, Canberra, Australia 2600. 

1. How can the data be processed to yield structure 
factors on the correct scale ? 

2. What  are the values of the thermal parameters 
BNa and BE? 

3. How are the intensities affected by extinction in 
any particular crystal? 

4. To what extent are the tabulated atomic/ionic 
scattering factors adequate for describing the 
diffraction ? This question relates to the suitability 
of various models for the electron distribution in 
NaF.  


